Analytic Combinatorics Exercise Sheet 2

Exercises for the session on $3 / 4 / 2017$

Problem 2.1

Let $y(z)$ satisfy $y=z \phi(y)$. Show that

$$
z y^{\prime}=\frac{y}{1-z \phi^{\prime}(y)}
$$

and hence that for any function $a(y)$ we have

$$
\begin{equation*}
\left[z^{n}\right] \frac{y a(y)}{1-z \phi^{\prime}(y)}=\left[u^{n-1}\right] a(u)(\phi(u))^{n} \tag{1}
\end{equation*}
$$

(you may use the formula $\left[z^{n}\right] H(y(z))=\frac{1}{n}\left[u^{n-1}\right] H^{\prime}(u) \cdot(\phi(u))^{n}$ for a function $H)$.

Problem 2.2

Recall that the class of mappings from $\{1,2, \ldots, n\}$ to itself has exponential generating function

$$
F(z)=\frac{1}{1-T(z)}
$$

where $T(z)=z e^{T(z)}$. Use (1) to show

$$
n!\left[z^{n}\right] F(z)=n^{n}
$$

Problem 2.3

Recall that the class of mappings from $\{1,2, \ldots, n\}$ to itself with no fixed points has exponential generating function

$$
H(z)=\frac{e^{-T(z)}}{1-T(z)}
$$

where $T(z)=z e^{T(z)}$. Show

$$
n!\left[z^{n}\right] H(z)=(n-1)^{n} .
$$

Problem 2.4

Recall that the exponential bivariate generating function of permutations counted according to cycles is $p(z, u)=(1-z)^{-u}$. Show that the second moment of the number of cycles in a random permutation of size n satisfies

$$
\mathbb{E}_{\mathcal{P}_{n}}(\chi(\chi-1))=\left(\sum_{k=1}^{n} \frac{1}{k}\right)^{2}-\sum_{k=1}^{n} \frac{1}{k^{2}}
$$

(you may use the binomial theorem for negative exponents $\left.(1-z)^{-u}=\sum_{n \geq 0}\binom{u+n-1}{n} z^{n}\right)$.

Problem 2.5

Let $A(z)=\sum_{n \geq 0} \frac{A_{n}}{n!} z^{n}$ denote the exponential generating function for the sequence defined by $A_{0}=1$ and $A_{n+1}=A_{n}+n$ for $n \geq 0$. Find $A^{\prime}(z)$ in terms of $A(z)$, and hence find $A(z)$.

Problem 2.6

Find the exponential generating function for the number of surjective mappings from $\{1,2, \ldots, n\}$ onto $\{1,2, \ldots, k\}$ (for fixed k).

